-R177 881 CONSTRUCTION OF STATIONARY SETS VIA KUZNETSOV NERSURES
(U) FLORIDA STATE UNW TRLLRHRSSEE DEPT OF STATISTICS

M _TAKSAR ET AL__AUG TIST
UNCLASSIFIED RFOSR -TR-87-8072 F‘BSZB 85 F/G 1271




g

Y

e i L 28 W25

o IO = = s ;

o = =g |

:ttp E———] t 2 =
oL W20

|||||| Ml

g —_—

A = | 22

¥ =

23 flie pee

l“ . T T }

v MICROCOPY RESOLUTION TEST CHART

NATIGNAL BUREA: 0 TANDAWIS fae o A

v ~

. - -

v L ad
LD 3 YWY T RV
ST e R Rt

e e T e A s A A T
R o, h AV S ERN

! v, O OO ONI00 W
iRy oy R N G O R A Ko e MR N T A o

(W W W N, W Vi W, WL
v ot
TR

-.-_.w‘\ ‘-\
AR

5




:‘ WLASSTVLED - - A @
R MENTATION PAGE
: AD—A 1 77 00 1 W 1b. RESTRICTIVE MARKINGS

e
- o
53
LS
' DISTRIBUTION/AVAILABILITY OF REPORT
e NA Approved for Public Release; Distribution
. 20. DECLASSIFICATION/DOWNGRAD unlimited.
o NA
: -‘: 4 PERFORMING ORGANIZATION REPORT NUMBERIS) 5. MONITORING ORGANIZATION REPORYT NUMBER(S)
FSU Statistics Report M744 AFOSR
o - flRo 87-0072
6s NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Florida State University (1f epplicable) AFOSR/NM
v ~
’
"‘. €c. ACCRESS (City, State and Z1P Code) . 70. ADDRESS (City, State and ZIP Coae)
~
¢ L
e Department of Statistics Bldg. 410 b
- Tallahassee, FL 32306-3033 Bolling AFB, DC 20332-6448
- Bs NAME OF FUNDING/SPONSORING Bbo. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMEER
;" CRGANIZATION . tIf opplicoble} !
- AFOSR nM wSwanemtiamves F49620-85-C-0007
.:_‘
S & ADCHRESS (City, State and ZIP Coar) 10. SOURCE OF FUNDING NOS.
Y
O PROGRAM PROJECT TASK WORK UNIT
g Bldg. 410 ELEMENT NO. NO. ND. NO.
Bolling Air Force Base, DC 20332-6448 6.1102F 2304 %j
. 11 TiTLE (Inciude Security Clasaification)
5 Construction of Stationary Sets Via Kuznetsov Measures
. 12. PERSONAL AUTHOR(S)
N Michael Taksar and P.J. Fitzsimmons
Ca 134 TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REFPORT (Yr.. Mo., Day) 1S. PAGE COUNT
Technical FROM TO August, 1986 13
J': 16 SUPPLEMENTARY NOTATION
.,:\
; 17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessory and 1dentify by block number)
serz | croue SUB. GR
|
I..
:.: 19 ABSTRACT tContinue on reverse if necessary ond identify by block number;
- In this paper we give a simple and comprehensive approach to the stationary
) -~
N :CJ.- l- regenerative sets, based on the Kuznetsov measure associated with an increasing process
s Q with independent increments and Lebesgue initial distribution. The range (closure
N ()
" - - . . . N .
of the image) of such a process with independent increments form a stationary regen-
= . erative set on the entire real line, We-show that the underlying distribution of the
% o regenerative set is finite iff the expectations of the increments are finite.
£
s " —d
",,:: ;-—4
. iC CSTRIEUTICN/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
2 cnceatsipiec/unumiteo B same as aer T oomic users O UNCLASSIFIED
~c !
-:. 28 NarsE CF RESPONSIBLE INDIVIDUAL 22p TELEPWCNE NUMBER 22¢ OFFICE SYMBC L '
~ Include Area Code)
e STt rs ’ 767 :
. (Gl N~
Ma, cfowley gas | N
<4 CD FORM 1473, 83 APR EDITION OF 1 JAN 73 1S OBSOLETE. UNCLASSIFIED :

SECURITY CLASSIFICATION OF THIS PAG




AFO‘R'T-R. 87-0072

CONSTRUCTION OF STATIONARY SETS VIA KUZNETSOV MEASURES

by

B

p. J. Fitzsimmons1
and

Michael TaksarZ*

FSU Statistics Report M744 x

RUD e
T A aEy
AFOSR Technical Report Number 86-201 e I B
& N,E"!Or."-'g
cEESsEN
& a2
O R R
! o ¢ BRI
August, 1986 ol r B
i R
: F vy b
'—';3‘:).{(1;_4')
foy ::H-'u‘-.!.‘z’
B moe o3l
™ o Baéw 2
o4 e o -
A g "';3‘0'2
-7 2 82099
A - e S 4
a re) O oy
® 1 - =3°a
oA Department of Mathematical Sciences 9 =5 .
- The University of Akron s ol ﬁ
A s PNl

X Akron, Ohio 66325 e ® F
[ o HE >3
e 2] Vs Qa
<] ?a @

4 -y
A [\ R >
e N z
> w 2
3 Department of Statistics v

The Florida State University
Tallahassee, Florida 32306-3033

*Research supported by the Air Force Office of Scientific Research under Grant
Number F49620-85-C-0007.




By

Construction of Stationary Sets Via Kuznetsov Measures
i ' By

Y

o P. J. Fitzsimmons

and

e Michael Taksar

4 ABSTRACT

‘Sk In this paper we give a simple and comprehensive approach to the stationary re-
generative sets, based on the Kuznetsov measure associated with an increasing process
‘229 with independent increments and Lebesgue initial distribution. The range (closure
of the image) of such a process with independent increments form a stationary regen-
erative set on the entire real line. We show that the underlying distribution of the

. regenerative set is finite iff the expectations of the increments are finite.
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‘ 1. Introdiction.
‘W
{4‘ A regenerative set is a set which form a probabilistic replica of itself after
-
15 each stopping time which belongs to this set. The theory of regenerative sets was
to
» \‘I
.fF' of a considerable interest for quite a while. Such sets are associated with visiting
(<) times of a point by a strong Markov process. Any such set can be obtained as a range,
) : i.e., closure of the image, of a process with independent increments or a subordinator
T -
W (see Maisonneuve [7], [8]).
-}3 Recently, there were several publications investigating stationary regenerative
¥
")
o . C . . .
zz sets on a real line. They correspond to visiting times of a point by stationary
o
L] &'
L . .
"2y strong M-rkov processess. In a seminal paper by Taksar [13] it was shown that all
. such sets are in one-to-one correspondence with the limiting ranges of the subor-
-~
S
;Ex: dinators having finite expectations. The construction first employed consisted of
s
R~
o taking the range of the process with uniform on {-2n, - n] initial distribution and
o passing to a limit as n > =,
-.\-
- . . .
,#q- Future generalizations and developments of the theory of regenerative sets were
N done inMaisonneuve [9], Fitzsimmons, Fristedt and Maisonneuve [1], Taksar [14]. In
e . . . . . -
i:: Maisonneuve [9] construction of stationary regenerative sets where done via obtaining
::} a stationary distribution for the semigroup of the "residual life’ process associated
X ‘.'\":
at with the jumps of a subordinator.
» The regenerative sets studied so far had finite underlying distribution P. In
I -y
.~
-
‘ﬁ: recent years, however, a new type of Markov processes emerged for which the under-
-
™ lying "probability measure" P is not finite but o-finite. Accordingly, the visit-
':ﬂ ing sets associated with such processes have infinite underlying distribution.
-~
8 :x". . . . .
. In this paper we present a simple method of construction of stationaryv regener-
‘ 0
l \l . » . - - 3 . . . . .
A ative sets which deals both with finite and infinite underlying distribution. We
'ﬁj consider the Kuznetsov measure on the space of all trajectories Y, associated with
T
.
o
‘- -\’o‘l
i, "!
%
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o the transition function of a subordinator and Lebesgue invariant measure. Then we
consider, the first hitting time T of the positive half line by this process. The
0 joint distribution of T and the range M of Y is o-finite and could be represented
} : as a product of two measures. The second multiplier in this product gives us the
distribution of a stationary regenerative set.

The paper structured as following. In section two we give general properties
of subordinators which are necessary for a construction of stationary sets. In the

third section we study the range of the staionary subordinator with Lebesgue ocne-

b s
K - dimensional distribution. We show how to obtain a stationary regenerative law
h-.I
! o via the distribution of the stationary subordinator. In the last section we prove
*
P that -M has the same law as M.
.:i
] 2. Generalities.
Sy
N4
A In our notations and difinitions we follow Maisonneuve [9], Fitzsimmons,
= Fristedt and Maisonneuve [1] with corrections made in Maisonneuve [10].
R~
- We denote by & a collection of all closed sets of R. For « ¢ &, t ¢ R put,
P assuming inf # = + =,
A
I
--\l .
o d_(«) = inf{s>t:isew’}, r, (v°) = d, (u°) - t,
oo t t t
o
e Tt(w°) = (w°-t) n JO,o[ = {s-t:sew’,s>t},
S
q‘;" a3 («]
::: where the bar over a set stands for the closure of the set. We denote bv G (Gt
i}
%
- spectivelv) the o-field generated by ds’ s € R (ds, s <t respectively). The
;:f process dt is an increasing cad-lag process optional with respect to 91, subject to
l\'I
;:, dt 2 t. Knowing dt’ one can reconstruct «® by the formular « = {teIR:dt =t}.
L] -
.
’ We will call a random set on a space (Q,F) a measurable mapping
RN
.""" M:(2,F) - (2°,6).
4
D
"
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The process Dt g dt > M and Rt 4 r, - M are cad-lag and measurable as well as

M g 1, ° M, that is the mapping (t w) + Mt(m), t < + « is a measurable mapping of

t ot

((Ru{=})xs,B yxF) into «°,6°).

IR U{+on
Let (Q,F,P) be a probability space with o-finite measure P and let Gt be a
filtration of F.

(2.1) Definition. A random set M on (?,F,P) is regenerative if the process

Dt = dt > M is adapted to Gt and there exists a probability measure PO on (Q°,Go)

with PO(Q°) = 1 such that for all t « R and all f € bG  (the set of bounded G -
measurable functions).
(2.2) P{feM_ |G } = PO(f}.
D t
t
The measure p? is called the law of regeneration.
Let (Xt,PX) be a subordinator on (2,F) that is an increasing process with

independent increments with respect to a filtration Ht’ and transition probabilites

X . . .
P7. It is characterized by a nonnegative constant A and measure 1 on ]0,»[ such

that I (xal) < ». For such a process

(2.3) p0 e 5%ty o 7 t8(s)
where
(2.4) gs) = xs + [(1-e > )m(dx).
0
The range M(w) 8 XH2 is a regenerative set with respect to the filtration
+
G, 2 H, , where
t 1 ¢

Tt =inf{u>0:Xu>t}

and the law of regeneration PO.
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Let U(x,T) be the potential kernel of the process X:
(2.5) UCx,T) 8 PRI (x Vdt)
0 t

In view of obvious relation

X 0
(2.6) PRHE(X )Y = PIF(X,_ )}

b

we have that

(2.7) U(x,T) = U(T-x),

where U(T) £ U{0,T). From (1.3) and (1.5), using Fubini's theorem , we get

(2.8) fe~sU(dx) = g(s)-l, s > 0,
0

Let 6x denote a unit measure concentrated at the point x, and m be the Lebesgue

measure .

(2.9) Proposition. Let

(2.10) m(F) = A8,(T) + )r'n]x,w[dx.
Then
(2.11) fu(x,T)m(dx) = m(InR ),

0

Proof. Take Laplace transform of the measure in the right hand side of (2.11).

By (2.7) and (2.8)
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fe ST fu(x,dy)m(dx) = [m(dx)[e *YU(x,dy)
0 0 0 X

[n(dx)e > [e U (dz2)
0 0

_loo- _ oo_
g(s) ée SXr(dx) = g(s) 1(%+J'e X1 x,®[dx)
0

g(s) s (1-e 7% n(as))
0

Thus the Laplace transform of the right hand side of (2.11) equals the Laplace
transform of the left hand side.

Let W be the set of all trajectories Yt’ -0 < t < + = endowed with the
Kolmogorov g-field F. Let P* be a family of transition probabilities on
J(YS’SEO).

The next theorem is a particular version of the result of Kuznetsov [6].

{2.12) Theorem. Letn be a o-finite measure on IR invariant with respect
to the transition probabilities pX. Their exists a o-finite measure Qn on (W,F)
under which Yoo - <s <+ is strong Markov and stationary with transition proba-
bilities P* and one-demensional laws n. The measure Qn is finite iff n(R) < =,

we apply this theorem to Lebesgue measure m and transition probabilities p*
of a subordinator. We call Qm the canonical Kuznetsov measure for the subordinator.

{1z measure will be our main tool in description of stationary scts.
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" 7. Construction of stationary regenerative sets.

Let (X,PX) be a subordinator and Q = Qm be the canonical Kuznetsov measure
on (W,F) associated with this subordinator. Let (W,F,Ft,Yt,Q) be the corresponding

stationary Markov process and g be the shift operator in W such that Yt 2o, = Yt+s'

Let T be a F-measurable random variable, where Fis a Q-completion of F.

We call T intrinsic if T =u + To 5, for each u ¢ R.

(3.1) Proposition. Let S and T be two intrinsic times and let A ¢ F be an
. . . -1 ,
invariant event that is 9, o A=A for all u e R. Let ¢ and ¥ be any two nonnegative

Borel functions on R such that
Je(r)dt = [u(t)de
R R

Then

QU (S);A)} = Q{o(T);A}
Proof. Put
a = [#(t)dt = [y(t)dt > 0.
R R
then, using Febuini's theorem and the relation Q ﬂ‘j-l = Q,

u
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a QUY(S);A} = Q¥ (S) [¢(T+u);A}
R

JQ{Y (S)¢ (T+u);A}du
R

. -1
éQ{w(Socu)@(Toou+u),cu Al}du

JQ{y(S-u)¢ (T);A}du
R

= a Q{s(T);A}

Put

PR
Doy

T = inf{t>-°°:Yt>5}

Since Y 1s a.e.Q i1ncreasing process, it 1s clear that T is an intrinsic time.
D
Consider a random set M on (W,F)

M(Y.)

I}
<

. . . 2 ~
{3.2) Theorem. There exists a g-finite measure PSon 7% such that for each

A - G and each B - BIR

(T- )IALM)J = m(B)PS(A}.

M KPS ST RS TP P LA MR T R TR A e N e N e
ity -‘ll.~.t aho! ’. v " bs \'(l' "l' f'u’o e Rt \:‘\'.’ oY)

A A A A AT
LY, Aars <

A,
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7

\::
[\

N\:.
. Proof. 1. Let Q be the law on R x @ of (T,M) under Q. Then for f sbBp and
- g « bG g =h(r_,r_,...,r ). Then (we put T = T below).

!-._ s 5,) S S

e 1 < n

g

Lt N .

e (3.3) Qlf(s)glw )} = Q{f(T)h(YT Yo RS )}

S S s

M 1 2 n

o = Q{f(T+u)h(YT Yo ,...,YT )Y = QIf(x+u)g(w )}

) 1% *n

ey

\'. The second equality in (3.3) is due to the stationarity of the process Y under the
:::~ measure Q. By virtue of Getoor [3], 6 can be represented as

v

N

< (3.4 Q=mx Pes

. where PS is a Z—finite measure on 9 (i.e., Pq is a countable sum of finite measures)
\:‘_‘ 27 Because Yt is an increasing process and because Q{T=t}=0, we have

s

i S

'_‘. = (Y b= 3 = f‘1

Q{t(Yt),T<t) Q{t(Yt),Yt>O} m{l]o’m[ )

N

.3
B Let
Ao wil) = Q{YTET,0£T<1}.
1.5

. | o

By virtue of (3.5) and Theorem (2.4)(iv) of [2]
‘.
X mH]R £} = uu(f)
+
[, -
where U is the potential kernel given by (2.5)

. .

s

F’
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In view of Proposition (2.9)

In view of (3.6} and Theorem (2.3)(1) ot [2]

(3.7) Q{YTnA,Tgf} = m(MaA).

3. By virtue of (3.4) and Fubini's thecrem 3
: - X
(3.8) PS{A} = Quw (T);M(Y.) A} 4
-
~ 2 q-
for anv A « G and any v < b R_, v > 0 such that ]
:

fvityde -1

Let 7 - B and A = {u): rg(ma)eTF. Substituting in (5.8}, we have

{r <7 = QI1.1Y. (
PS rS ; Q\l“Yr)¢lT)

= [T oo midxade = - (0)

The second equality in (3.9) is due to (3.7) Relation (3.9) shows that Pi is a

T-finite measure,

(5.10) Proposition. For any s,t- R
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:
. Proof. Let P = Po. Since M(Y.ocs) = (M(Y.) we get that A = {Mel'} is an invariant
;: set. By virtue of (3.8) and Proposition (3.1) X
| 3 »
Az :
) P T} = QUu(T,);A} .
= QUu(Ty);A} = Py{I'} = P(r}. ‘
o :
* (3.11) Theorem. The random set M(w°) = on (Q°,F°,P) is a stationary regenerative
'i set with respect to the filtoration Gt = J(rs,sst) with the law of regeneration Po. j
v The measure P is finite iff ")
g 1:
(3.12) [x(dx) < = )

0

P A

Proof. 1. Let GX:Q > Q°, ex(wO) = we - X and ¢x:W > W,(cpx(Y.))t =Y, - x. Then

¥
1Y = .

S M6, (Y.)) = 8 (M(Y.)),
;j (3.13)
15 =

- TS(¢X(Y.)) = TS+X(Y.).

) .
& Since both the initial distribution (the Lebesque measure) and the transition proba- 3
‘ "
» A\
O bilities P are spatially 1i.variant, we have {
2 {
:- . -1 B .
X Qe o =Q p
- pA
2: for any x «¢ R. Therefore, using (3.13), "
4 Ly o : .
ie P{Gx A} = Q{w(TO),Ms¢xeA} =
N

\ »
5_1 (3.14) = Q{w(T-X)D‘pX.’MO(bng} ‘
, = . = "
. Qly(T_ );MeA} = P_ {A}. t.
B "
4 I,
> ,:
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By virtue of Proposition (3.10}, P_x = P, therefore (3.14) equals P(A). This shows
oy
0
‘:t‘ that P is the law of a stationary set.
%Y
B > o °
¥ 2" Let £ ¢ b6 and A € G . Then {M(Y-)eA}eFT . Using the strong Markov property
0
-
S
"ﬁ for Y
fh*s
s P{foMy ;A} = Q(y(T ) EMy );M(Y.)eA}
- 0 D
[P 1) 0 O
. - 0 ) 0
Nyl (3.15) = Q{w(TO)P {£}1:M(Y.)eA)} = P{P {f};A}
N
EN
i = piarpPcgy.
o'y
- In view of stationarity, (3.15) will hold if D0 is replaced by T,. The latter
:3 shows that P has regenerative property with the law of regeneration P
R
3. In view of (3.9) and Proposition (3.10)
::’:"\- P{Q } = P{rse R} = n( R)
=
vt = A+ [N]x,=[dx = » + [xI(dx).
T °
229
".\J 01 . -~
flnS Thus P{¢ } < = iff (3.12) holds.
, :J 4. Reversability properties of regenerative sets
55
R
.}*ﬁ For simplicity we will consider here only perfect regenerative sets. Discrete
’,
i ’l . . . . .
i case 1s treated similarly. For this sets the regenerative law P0 is the law of a
o
o strictly increasing subordinator.
q%g
v
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(4.1) Theorem. If M is a stationary regenerative set then -M has the same law as M.

Proof 1. Consider the process (W,F,Ft,Y,Q) which generates the set M.

Let 9 = Put
t

-(Y(_t)_).

-3
n

inf{t:§t>0} = -sup{t:Yt_<0}

It

—sup{Yt<0} = -inf{Yt>0} = -TO, a.s. Q

The third and the fourth equalities in (4.2) hold because Y is strictly increasing

a.s. Q.

2 Simple calculations show that ?t 1s a Markov process with the same one-
dimensional distributions and potential kernal U as Yt' Thus ?t has the same law
as Yt. Let %(x) = .5 exp -Ix|. Let M = M(?.). Then M = -M; and by virtue of (3.8)

P{MeA}

Q{w(TO);M(Y.)eA}

Q{w(-TO);M(Y.)eA}

QLu(T);-M(Y)eA} = P{-McA}

The latter shows that M and -M have the same distribution.

. -
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